安徽省光学学会

2025年01月11日 星期六

会员单位动态

安工大设备健康管理与智能诊断团队发表故障诊断最新研究成果

文章来源:安徽工业大学作者:潘海洋发布时间:2024-07-01


       近日,安徽工业大学机械工程学院郑近德教授团队在国际权威期刊《IEEE Transactions on Industrial Informatics》(中科院一区Top期刊,影响因子11.7)和《Advanced Engineering Informatics》(中科院一区Top期刊,影响因子8)连续发表设备故障诊断最新研究成果。研究工作得到了国家自然科学基金、安徽省高校杰出青年科研项目和安徽省高等学校科学研究重点项目等资助。

(所提方法MRSD和对比方法的降噪结果)

(所提方法MRSD和对比方法的能谱图结果)

       为了克服机械设备状态特征评估指标伪单调性的问题,本研究设计了一种最大Ramanujan谱信噪比解卷积(MRSD)方法。MRSD通过v-Ramanujan谱为微弱状态特征评估提供最佳平面,提高了状态特征评估指标的准确性和噪声鲁棒性;设计了v-Ramanujan频谱信噪比指标,并将其作为目标函数更新滤波器,提高算法的降噪性能。相关研究成果发表在《IEEE Transactions on Industrial Informatics》,安徽工业大学为论文唯一单位,机械工程学院程健博士为论文第一作者,潘海洋副教授为通讯作者,郑近德教授为合作作者。

(基于RSCMM模型的故障诊断流程图)

(五种不平衡比率下六种方法的不同度量雷达图)

       此外,为了解决设备故障诊断中数据不平衡时的分类问题,本研究提出了一种鲁棒光滑约束矩阵机(RSCMM)。RSCMM通过设计动态调整因子,可以根据不平衡率动态调整损失项系数,提高数据不平衡下的识别性能;设计了RoBoSS损失项,弱化了噪声的影响和提高了模型的收敛速度。相关研究成果发表在《Advanced Engineering Informatics》,安徽工业大学为论文唯一单位,机械工程学院潘海洋副教授为论文第一作者,郑近德教授为通讯作者,刘庆运教授、童靳于高级实验师、邓书朝为合作作者。

       论文链接:https://ieeexplore.ieee.org/document/10568994

       https://doi.org/10.1016/j.aei.2024.102667




新闻链接:https://www.ahut.edu.cn/info/1226/24739.htm

网站内容来源于互联网,由网络编辑负责审查,目的在于传递信息,提供专业服务,不代表本网站平台赞同其观点和对其真实性负责。如因内容、版权问题存在异议的,请与我们取得联系,我们将协调给予处理(按照法规支付稿费或删除),联系方式:ahos@aiofm.ac.cn 。网站平台将加强监控与审核,一旦发现违反规定的内容,按国家法规处理,处理时间不超过24小时。