近日,安光所张为俊研究团队在大气OH自由基总反应性测量研究方面取得新进展,相关研究成果以封面文章发表于 Analytical Chemistry 2020, 92, 6, 4334-4339(《时间分辨激光闪光法拉第旋转光谱仪:一种用于OH自由基总反应性测量和自由基动力学研究的新工具》)。
OH自由基是大气中最重要的氧化剂,其快速循环反应决定着大气中主要污染物的生成和去除。揭示OH自由基转化机制是大气氧化性和污染成因研究的核心挑战,其中OH自由基总反应性(kOH’)及其反应动力学参数的准确测量极其重要。
磁旋转吸收光谱技术(FRS, Faraday rotation spectroscopy)基于顺磁性分子在纵向磁场中能级产生塞曼分裂而发生的法拉第旋光效应,入射的线偏振光产生偏振面的旋转,通过调制解调旋光信号获得磁旋转吸收光谱。相比传统的光谱方法,FRS技术对顺磁性分子信号有显著的增强作用,并排除了其他抗磁性分子(如大气中常见的水和挥发性有机组分等)吸收的干扰,具有很高的探测灵敏度;通过磁场参数、谱线强度、吸收光程等参数,可以直接获得OH的浓度,无需复杂的标校过程。
团队赵卫雄研究员在2011年首次完成了2.8 微米FRS光谱探测OH自由基的原理性实验,利用25厘米长单光程吸收池实现了OH自由基3×108分子/立方厘米的探测极限,近散粒噪声水平(Zhao, et al., Optics Express, 2011, 19, 2493-2501; Applied Physics B, 2012, 109(3), 511-519)。随后,将大型螺线管超导磁体与光学吸收多通池相结合,实现了光化学烟雾箱中OH自由基的实时原位测量,在108米吸收光程下,探测极限达到1.6×106分子/立方厘米(Zhao, et al., Analytical Chemistry, 2018, 90, 3958-3964)。研究结果表明,FRS技术非常适用于OH自由基的实时、在线、准确测量,具有很好的实际大气外场应用前景。
本研究在已有工作的基础上,针对实际大气测量,将FRS技术与激光闪光光解方法相结合,发展了一种新型的大气OH自由基总反应性测量装置。紫外光解激光(266纳米)光束与探测激光重叠光路为25米,在此条件下,OH浓度和kOH’的探测极限分别为4×106 分子/立方厘米(56秒)和0.09 s-1(112秒)。
2019年4月至6月,该仪器参加了北京大学组织的“青藏高原大气氧化性及其在全球变化中的作用”外场观测实验,获得了海拔4730米处纳木错站点大气OH总反应性的数据。与现有方法相比,该装置的造价大大降低,易于维护,便于外场广泛应用及台站长期观测,在大气污染的应对与防治方面具有重要的实际应用价值。
本研究得到国家自然科学基金国家重大科研仪器研制项目、重大研究计划,中国科学院科研装备研制项目、青年创新促进会、合肥物质科学研究院院长基金及中国科学院国际人才计划(PIFI)项目资助。
文章链接:https://doi.org/10.1021/acs.analchem.9b05117
封面文章
青藏高原外场观测实验现场照片
新闻链接:http://www.aiofm.cas.cn/xxwzx/xkyjz/202003/t20200320_547673.html